

bromo(trialkylsilyl)propane derivative,^{8,9} the most commonly employed synthesis of 3 involves bromination of tram-crotonic acid **(1)** followed by bromo decarboxylation of the resulting **erythro-2,3-dibromobutanoic** acid Unfortunately, the reported bromo decarboxylations of **2** to 3 with pyridine,¹⁰ aqueous Na_2CO_3 ,^{11,12} or NaHCO_3 in DMF¹³ all proceed in poor yield.

In this paper we report a substantial improvement in the procedure (Scheme I) by carrying out the bromo decarboxylation of 2 in neat Et_3N or $EtN(i-Pr)_2$ at 40 °C. Use of either amine provided isomerically pure **314** reproducibly in **57%** yield **(50%** overall yield from **1).**

Storage of freshly distilled 3 in tightly sealed, light-excluding containers at -20 $^{\circ}C^{15}$ showed no isomerization and/or decomposition of 3 over several months, as monitored by **360-MHz** NMR spectroscopy. Thus, addition of either NaHCO₃⁶ or $K_2CO_3^7$ as a stabilizing agent appears to be unnecessary for 3 prepared by this methodology.

We believe this improved synthesis provides a convenient and economical means for preparing isomerically pure cis-1-bromopropene. This bromoalkene is useful for synthetic applications requiring *cis-*propenyllithium^{6,12,16} and cis -propenylmagnesium bromide. $5,16$

Experimental Section

Melting points are uncorrected. Caution! Heptane poses a dangerous fire and explosion hazard when exposed to heat or flame. Vapors are heavier than air and may travel a considerable distance to a source of ignition and flash back. Situtations which might cause electrostatic discharges should be avoided when handling this solvent.

erythro-2,3-Dibromobutanoic Acid (2). A 500-mL flask equipped with an overhead stirrer, thermometer, and addition funnel was charged with trans-crotonic acid **(1) (51.68** g, **0.60** mol, Aldrich) and **320** mL of heptane. The resulting mixture was stirred and brought to 30 $^{\circ}$ C (warm water bath) under dry N₂.

and references cited therein.

Br2 **(34.4** mL, **0.63** mol, 1.05 equiv, Fisher) was added dropwise over ca. **45** min while maintaining a reaction temperature of **30** "C (cold water bath). Within **4-5** min **after** complete addition, crystallization of **2** commenced. A cold water bath was applied to maintain a reaction temperature of ca. **34** "C. The mixture was brought to ambient temperature, stirred an additional 16 h, and cooled in an ice water bath for **30** min. The colorless cryatale were collected by suction filtration, washed with heptane **(2 X 75** mL), and dried in vacuo at ambient temperature to constant weight to afford 130 g (88%) of 2: mp 87-89 °C (lit.¹¹ mp 87-88 "C).

(2)-1-Bromopropene **(3).** A **2-L** flask equipped with **an** overhead stirrer, thermometer, and reflux condenser with a mineral oil bubbler attached to the top of the condenser was charged with 517.5 mL (3.71 mol, 4.13 equiv) of 99% triethylamine charged with **517.5 mL (3.71** mol, **4.13** equiv) of 99% triethylamine (Aldrich). With vigorous stirring, a **total** of **221** g (0.90 mol) of acid 2 was added in ten portions at 5-min intervals. During this addition period, **gas** evolution (bubbler) and an exotherm to **40** "C were noted. The reaction was stirred at ambient temperature for **3.5** h followed by heating at **40** "C for an additional **3.5** h (gas evolution complete). The mixture was cooled to ambient temperature, and **321 mL** of water was added. The **solids** were **rinsed** in and allowed to dissolve. Concentrated HCl solution **(230** mL, Fisher) was added while maintaining a reaction temperature of 0 "C. Separation of the lower phase in a separatory funnel gave **82.2** g **(75%)** of crude 3." The aqueous phase was saved for

recovery of triethylamine. The crude **3** was washed twice with an equivalent volume of saturated NaHCO₃ solution and brine and dried (Na₂SO₄). Simple distillation at atmospheric pressure¹⁸ afforded $62.\overline{4}$ g (57%) ¹⁹ of isomerically pure cis-1-bromopropene (3)14J6 **as** a colorless liquid: bp **59-60 OC** (lit.lo bp 58-60 "C).

The acidic aqueous phase was cooled to 0-5 °C, and 750 mL of 25% aqueous NaOH solution was added dropwise with good stirring. Separation of the upper phase in a separatory funnel afforded a quantitative recovery of the triethylamine.

A similar result was obtained by substituting an equimolar amount of $EtN(i-Pr)₂$ for the $Et₃N$ in the conversion of 2 to 3.

(19) This yield represents a significant improvement over the beat current literature yieldla for preparation of cis-1-bromopropene **(3)** of high **(>99%)** isomeric purity.

6-Phenyl-2,4,6-trioxohexanoic Acid

Martin Stiles* and John P. Selegue'

Department *of* Chemistry, University *of* Kentucky, Lexington, Kentucky **40506-0055**

Received January 8, *1991*

The title compound **1** is of current interest because of ita relationship to the enolic acids **2** and 3, which have been implicated in the bacterial oxidation of biphenyl2 and certain polychlorobiphenyls,³ respectively. In this paper,

⁽⁷⁾ Roueh, W. R.; Adam, M. A.; Walta, A. E.; Harris, D. J. J. *Am.*

Chem. **Soc.** 1986,108,3422. **(8)** Fleming, I.; Lawrence, **N.** J. Tetrahedron Lett. 1990, *31,* 3645. (9) Miller, R. B.; McGarvey, **G.** *J. Org. Chem.* 1979, *44,* 4623 and references cited therein.

⁽¹⁰⁾ Bachman, **C.** B. J. *Am. Chem. Soc.* 1983,55, 4279 28% yield. (11) Farrell, J. **K.;** Bachman, **G. B.** *J. Am. Chem. Soc.* 1936,67,1281;

^{0%} yield.

(12) Braude, E. A.; Coles, J. A. J. Chem. Soc. 1951, 2078; 16% yield.

(13) Norris, W. P. J. Org. Chem. 1959, 24, 1579; 38% yield. A second

1-bromopropene fraction consisting of $Z/E = 96/4$ was also obtained in

 (14) Analysis of the distillate by NMR spectroscopy (360 MHz, CDCl₃/TMS) showed no contamination by *trans*-1-bromopropene when compared with an NMR spectrum of commercial material (Aldrich, Z/E = 70/30).

⁽¹⁵⁾ Immediately after distillation, the distillate was transferred to a narrow-mouth screw-top amber bottle, tightly sealed with parafilm, and refrigerated at -20 or until needed. Prior to use in a reaction, the case i

⁽¹⁷⁾ The 360-MHz NMR spectrum showed cis-1-bromopropene and unidentified triethylammonium salt byproducta. No trans-l-bromopropene was detected.

⁽¹⁸⁾ The product was distilled **ae** one fraction; no forerun **was** collected.

⁽¹⁾ Inquires concerning the crystallographic study should be addressed to this author

⁽²⁾ Gibeon, D. T.; **Roberta,** R. L.; Web, M. C.; Kobal, V. M. *Biochem. Biophys. Res. Commun.* 1973,50,211. Catelani, D.; Colombi, A.; Sorliini, Boyleys. Nes. Commun. 1913, 30, 211. Caesani, D., Colombu, A., Sorian, C., Trecani, V. Biochem. J. 1973, 134, 1063. Omori, T.; Sugimura, K.;
Lei Trecani, V. Biochem. J. 1973, 134, 1063. Omori, T.; Sugimura, K.;
Ishigooka,

Microbiol. 1979, 38, 301.

Figure 1. Ultraviolet spectra of 1 (5.0 \times 10⁻⁶ M) in the following: **ethyl ether (A); DMSO (B); methanol (C); 0.01 M aqueous HCl (D); and 0.01 M aqueous NaOH (E).**

we report the preparation and characterization of **1,** including an X-ray crystal structure analysis.

Triketo acids with the general structure of **1** have not been described previously.⁴ Dorman⁵ called attention to some of the difficulties attending synthetic efforts in a related system. It was anticipated, moreover, that characterization of **1** could be complicated if the various possible tautomers were of comparable stability.

Treatment of benzoylacetone with dimethyl oxalate in the presence of magnesium methyl carbonate,⁶ followed by acid hydrolysis, gave **1** in 52% yield. The substance was readily purified by extraction of the crude product **into** pH 7 buffer, followed by reacidification. Crystallization from organic solventa was slow and inefficient, but crystals suitable for X-ray analysis could be **grown** from ethyl ether solution.

Compound **1** behaves **as** a diprotic acid in aqueous solution. Potentiometric titration yielded a value of 7.50 for pK_2 . A rough value of 3 for pK_1 could be approximated from the titration data, but low solubility in water prevented an accurate determination. The corresponding values for 2,4-dioxopentanoic acid are 7.70^7 and 2.58 .⁸ A small increase in intensity of the **387-nm** absorption band at pH 12, compared to pH 9, may be associated with removal of a third proton from **1,** but the titration curve did not exhibit any inflection in the region.

Proton NMR spectra of 1 in acetone- d_6 revealed that the fully enolic tautomer $1a^9$ (singlets at δ 6.46 and 6.63)

(5) Dormnn, L. *J.* **Org. Chem. 1967, 32, 4105.**

Figure 2. ORTEP¹⁶ plot of the structure of 1 showing 50% **probability ellipsoids. Intramolecular and intermolecular hydrogen bonding are indicated.**

predominates (86%) in that solvent. The monoenol **lb** *(ca.* 7%) could also be identified by the singlet methylene signal at δ 4.44 and the corresponding ethylenic proton at δ 6.61. In addition, very small concentrations of two other species could be detected, one of which is clearly **Id.** By contrast, the cyclic isomer **Id** is the major component (52%) in **DMSO-&** along with 42% of **la** and 6% **lb.** The methylene protons of **Id** appear as a well-resolved AB quartet (δ 2.74 and 3.03, $J = 15$ Hz).

When a solution of 1 in DMSO was warmed to 90 °C for 1 h, quantitative conversion to 4^{10} was observed.¹¹ The reaction occurs slowly at room temperature, and the ratio **(NMR)** of **la** to **Id** remains constant during the formation of 4.

Ultraviolet spectra of **1** (Figure 1) illustrate dramatically the effect of solvent on the equilibrium distribution of tautomers. Absorption maxima fall into three distinct regions: a, **370-390** nm, which is **assigned** to the fully enolic tautomer **la;** b, 290-300 nm, characteristic of the enolic

8-diketone chromophores in **lb** and **IC,** as well as the **6 phenyl-2,3-dihydropyan-4-one** chromophore12 of **Id;** and c, the 250-nm region for aromatic ketone absorption. In nonpolar solvents such **as** ethyl ether (curve A) and hexane (nearly identical with curve A) the fully enolic tautomer

(9) In principle, the three rapidly interconverting species i -iii as well as possible geometric isomers, contribute to the averaged NMR spectrum.
Chemical-shift variations between different solvents may reflect differen **equilibrium distribution of these subspecies.**

OH *0* HO *0* **HO** HO OH OH *0* PhWC0,H PhmCO& PhwC02H i I/ iii

(10) (a) Still, I. W. J.; Plavac, N.; McKinnon, D. M.; Chauhnn, M. S. Can. *J.* **Chem. 1976,54, 280. (b) Borsche, W.; Peter, W. Liebigs Ann. Chem. 1927,453, 148.**

(11) The conditions for the conversion of 1 to 4 are far milder than described previously for cyclization of triketones to 4-pyrones, see: Light, R. J.; Hauser, C. R. J.; Org. Chem. 1960, 25, 538.
(12) Gelin, S.; Gelin, R. Bull. Soc. Chim. Fr. 1968, 288.

⁽⁴⁾ The diethyl eater of 2,4,&trioxoheptanedioic acid, which contains the same array of functional groups ns 1, has been prepared ns *nn* **intermediate in the synthesis of chelidonic acid Riegel, E. R.; Zwilgmeyer, F. Organic Syntheses; Wiley: New York, 1943; Collect. Vol. 11, 126.**

⁽⁶⁾ This reagent hns been used principally ae a carboxylating agent (Inoue, S.; Yamnzaki, N. Organic and Bioorganic Chemistry *of* **Carbon** acylation and alkylation of enolizable substrates has been reported:
Stiles, M. J. Am. Chem. Soc. 1959, 81, 2598. Finkbeiner, H. L. J. Org.
Chem. 1965, 30, 3414.

⁽⁷⁾ Guthrie, J. P. *J.* **Am.** *Chem.* **SOC. 1972,94,7020.**

⁽⁸⁾ Lehninger, A. L.; Witzemnnn, E. J. *J.* **Am. Chem. SOC. 1942, 64, 874.**

la predominates, in general agreement with the NMR result found for acetone solutions. In DMSO (curve B), the maxima in **regions** a and b are of comparable intensity, in satisfactory agreement with the NMR result, which indicated nearly equal proportions of **la** and **Id.** In solvents of intermediate polarity such **as** methanol (curve C) or ethanol (not shown), the fraction of **la** lies between the former two. Aqueous solutions of the free acid (curve **D)** exhibit the major peak at 299 nm, with only a very weak shoulder in region a, indicating that **la** is only a minor component. In aqueous solutions above pH 10, compound **1** is completely converted to the dianion, and under these conditions **Id** (i.e., its anion) can be eliminated from consideration. Since the spectrum at pH 12 (curve E) is very nearly identical with that at pH 2 in region b, it appears that the monoenols, rather than **Id,** are the major species in aqueous solution. We cannot rule out the existence of a hydrate of **IC** (or a nonenolic hydrate) in the acidic solution; Guthrie7 has shown that 2,4dioxopentanoic acid forms a hydrate at acidic pH, and the hydrate of $oxaloacetic acid is well characterized.¹³$

Efforts to explore the chemistry and biochemistry of **1** are underway.

Crystal Structure Analysis of 1. An **ORTEP** plot of compound **1, as** determined by X-ray diffraction, is shown in Figure 2. Bond angles and distances in the molecule are consistent with a localized structure, in which ketonic carbonyl C4-O4 $(1.273 \text{ (4)} \text{ Å})$ is flanked by two enols C2carbon backbone, there are double bonds between C2 and C3 (1.338 **(5) A)** and C5 and C6 (1.345 **(5) A).** Enolic hydrogens H2 and H6, which were located and refined, are intramolecularly hydrogen bonded to ketone oxygen 04. The entire molecule is nearly planar, with a maximum deviation of any non-hydrogen atom from the mean molecular plane being -0.141 **(5)** *8,* for C9. The plane of the phenyl group (C7 to C12) forms a dihedral angle of only 5.2° with the rest of the molecule. There is strong hydrogen bonding between adjacent molecules (Figure 2). The carboxylic acid group C1-01-01A forms a typical asymmetrically hydrogen-bonded dimer, with 01-H1, O1A-H1, and 01-01A distances of 1.27 (6), 1.38 (6), and 2.624 (4) **A,** respectively. There is weaker hydrogen bonding between the keto/enol portions of adjacent molecules, arranged in a head-to-tail fashion; H2 bonds to 06 (2.51 (4) **A)** and H6 bonds to 04 (2.41 **(4) A).** There is also a close approach (2.60 (4) **A)** of 01 to H11. This leads to the formation of hydrogen-bonded sheets of molecules, separated by normal van der Waals distances between sheets. 02 (1.343 (4) Å) and C6-06 (1.333 (4) Å). Within the

The finding that **2,4,6-trioxo-6-phenylhexanoic** acid exists as **la** in the solid state is in accord with previous structures of 1,3,5-triones. For example, the structure of **lI5-diphenyl-l,3,5-pentanetrione"** shows a nearly identical hydrogen-bonded geometry. The structures of several tetracycline derivative^'^ **also** show very **similar** geometries, although one of the enol groups is actually a phenol in these cases.

Experimental Section

Starting materials were obtained from Aldrich Chemical **Co.** and used without purification.

6-Phenyl-2,4,6-trioxohe.anoic Acid (1). l-Phenylbutane- 1,3-dione **(0.324** g, **2** mmol) and dimethyl oxalate **(0.471** g, **⁴** mmoles) were dissolved in **11 mL** of **2** M solution of magnesium methyl carbonate in **DMF** (Aldrich). The pale yellow solution was heated at **145 "C** in a distilling flask for **4** h, during which time a few drops of distillate (methanol + DMF) condensed. The **viscous,** deep amber reaction mixture was hydrolyzed by pouring **into** rapidly stirred ice **(30** g) and concentrated **HCl(4 mL).** The yellow precipitate was taken up in ethyl ether, washed with water, and extracted $(2 \times 20 \text{ mL})$ into pH 7 phosphate buffer (0.2 M) .
Acidification of the buffer extract to pH 1-2 precipitated a light yellow solid that was taken up in ethyl ether, washed with water, and dried over sodium sulfate. Removal of solvent yielded **0.242** g **(52%)** of light yellow powder. The NMR spectrum of this material did not differ significantly from that of material obtained by recrystallization from ethyl ether, from acetone-hexane, or from acetonewater. Mass spectrum: **234.0527** (M+), **189,162,** 160, 147, 105, 103, 91, 77, 69, 51, 50. Anal. Calcd. for C₁₂H₁₀O₅: **C, 61.53; HI 4.30.** Found **C, 61.51;** H, **4.20.**

Heating the compound in a capillary tube or on a hot stage **caused** melting to **begin** near **160 OC.** Before melting **was** complete, colorless rods began to form in the melt. *As* the temperature was raised, the whole mass was converted to nearly colorless rods that melted with decomposition at 248-250 °C.

¹H NMR Spectra. In acetone- d_6 , all the aromatic protons appeared **as** multiplets grouped between 6 **7.5** and **8.1.** The remainder of the spectrum was analyzed **as** follows: 86% **la** 6 **6.46** *(8,* **H3),6.63** *(8,* **H5);7% lb 6 4.44 (s,** *CHI),* **6.61** *(8,* H3);ca. **3% Id** 6 **2.8** and **3.2** (AB, *J* = **15 Hz), 6.15 (5);** ca. **3%** unknown component **(IC** ?) with singlet at **4.15.** At -40 **OC** the OH protons were resolved **into 3** signals at **12.7** (broad), **13.1** (sharp) and **15.2** 6 (sharp); otherwise, the **spectrum** differed little from that observed at room temperature.

In DMSO- d_6 , the aromatic protons appeared between δ 7.45 and **8.03.** The remainder of the **spectrum** was analyzed **as** follows: **42%** la 6 **6.22** (8, **H3) 6.87 (s,** H5); **6% lb** 6 **4.45** *(8, CHI),* **6.33** *(8,* **H3); 52% Id 6 2.74** and **3.03 (AB** quartet, J ⁼**15** Hz), **6.17** *(8,* **H5).**

¹³C **NMR Spectra.** In acetone- d_{6} : (all signals attributed to la) **6 195.2 (C4), 178.5 (Cl), 163.4** and **160.4 (C2** and **C6), 134.0, 133.7, 129.8,** and **127.6** (aromatic), **105.1** and **98.4 (C3** and **C5).** In DMSO-d6: la 6 **188.7 (e, c4), 169.3** *(8,* **Cl), 166.3** and **163.8 (C2** and **C6), 103.9** (d, *J* = **167 Hz)** and **101.8** (d, J ⁼**168** Hz) **(C3** and **C5);** Id 6 **190.9** (t, J ⁼**6** Hz, **C4), 180.9** *(8,* **COOH), 156.6** *(8,* **C6), 100.2** *(8,* **C2), 97.9** (d, *J* = **166 Hz, C5), 44.0** (t, *J* = **131** Hz, **C3).**

Ultraviolet Spectra. The curves illustrated in Figure **1** were obtained by dissolving **0.0117** g of **1** in **10** mL of methanol and diluting **0.50** mL of that solution to 50.0 mL with the indicated solvent.

4-0xo-6-phenyl-4R-pyran-2-carboxylic Acid (4). The triketo acid **1 (0.021** g) was dissolved in **1.5** mL of acetic acid and heated at **110 "C** for **2** h. Dilution with hexane precipitated an oil that crystallized from acetone to yield 0.016 g (80%) of colorless leaflets that melted with effervescence at 250–252 °C (lit.^{10b} mp, 237 °C dec.). The ¹³C NMR spectrum agreed with that published **previously.**^{10a} ¹H NMR (DMSO-d₆): δ **6.90** (d, 1 H, $J = 2.3$ Hz), **7.15** (d, **1 H,** J ⁼**2.3 Hz), 7.6** (m, **3 H),** and **8.0** (m, **2 H).**

Crystal Structure Analysis. A yellow crystal of **1** approximately $0.6 \times 0.3 \times 0.2$ mm³ was obtained by slow cooling of an ethyl ether solution. It was mounted in air on the tip of a glass fiber by using epoxy cement. Data were collected at 23 °C with **graphite-monochromatized** Mo *Ka* radiation on an Enraf-Nonius **CAD-4** diffractometer. Cell constants were determined from least-squares refinement of the setting angles of **25** reflections with $5.4^{\circ} < \theta < 13.6^{\circ}$. The compound has a formula weight of **234.21, belonging to the monoclinic space group** $P2_1/c$ **(No. 14) with** $a = 6.610$ **(3)** Å **,** $b = 7.418$ **(3)** Å **,** $c = 21.880$ **(6)** Å **,** $\beta = 93.44$ (2)°, $V = 1071.11 \text{ \AA}^3$, $Z = 4$, $\rho_{\text{caled}} = 1.452 \text{ g} \cdot \text{cm}^{-3}$. Diffraction intensities were collected out to $\theta = 27.5^{\circ}$ using an ω -20 scan technique. Of 4804 unique reflections, 1909 with $I \geq 3\sigma(I)$ were used to solve and refine the structure. Lorentz and polarization corrections, but no absorption correction $(\mu = 1.070 \text{ cm}^{-1})$, were applied. The structure was solved and refined by using the direct methods program MULTAN77 and local versions of Ibers' NUCLS least-squares program and Zalkin's **FORDAP** Fourier program.

⁽¹³⁾ Kokesh, F. C. *J. Org. Chem.* **1976,41, 3593. (14) Cea-Olivares, R.; Rodriguez,** I.; **Roealee, M.** J.; **Toscano, R. A.** *Aust. J. Chem.* **1987,40, 1127-1130.**

⁽¹⁵⁾ (a) Stezoweki, J. J. *J. Am. Chem. SOC.* **1976,98,6012-6018. (b) Jogun, K. H.; Stezomki,** J. J. *J. Am. Chem. SOC.* **1976,98,6018-6026. (16) Johnson, C. K.** *Report ORNL 5138;* **Oak Ridge National Laboratory: Oak Ridge, TN, 1976.**

Least-squares refinements minimized the function $\Sigma_{h,h}w(F_0 - F_0)^2$ where the weighting factor was $w = 1/\sigma(F_0)^2$. All hydrogen atoms were located in a difference Fourier map. The largest peak in the final difference Fourier map showed 0.062 e \mathbf{A}^{-3} near O1. Full-matrix least-squares refinement with anisotropic thermal parameters for **17** carbon and oxygen atoms, and isotropic thermal parameters for 10 hydrogen atoms, led to $R = 5.7\%$, $R_w = 6.9\%$, maximum Δ/σ = 0.35 (x of H1), with 195 variables. Additional crystallographic details are presented in the supplementary material.

Acknowledgment. We thank Claude Dungan for the careful NMR measurements and the University of Kentucky Major Research Instrumentation Bond Program for equipment.

Supplementary Material Available: Listings of crystal structure data, pcaitional and thermal parameters, bond distances and angles, least-squares planes, torsion angles, and experimental and calculated structure factors for the structure of **1 (21** pages). Ordering information is given on any current masthead page.

Perturbations of an Isotopically Substituted Nonhydroxylic Solvent upon the Chemistry of an Anion Radical

Gerald R. Stevenson,* M. Kent Ballard, and Richard C. Reiter

Department of Chemistry, Illinois State University, Normal, Illinois 61 761

Received December 10, 1990

Introduction

There have been a number of studies on the effect of the replacement of hydrogen with deuterium upon acidity and basicity, and the results show that deuterium behaves **as** though it were electron donating relative to hydrogen.' This behavior is responsible for a number of observed solvent isotope effects.² Most reports of solvent isotope effects have involved kinetic studies where water/deuteriated water or other hydroxylic solvents served as the solvent systems.³ We wish to report an equilibrium isotope effect from a nonhydroxylic solvent that is consistent with the electron-releasing nature of deuterium. EPR evidence indicates that the perdeuteriation of the most common anion radical solvent, tetrahydrofuran (THF), measurably increases its ability to separate ions involved in ion-pairing equilibria.

When naphthalene dissolved in THF is exposed to a freshly distilled sodium mirror under vacuum, the solvated anion radical $(C_{10}H_8^{\bullet-})$ is generated and exists in at least three different **states** of ion association. These include the free solvated ion $(C_{10}H_8^{--} + Na^+)^{4a}$ as well as the sol-

Figure 1. (Top) EPR spectrum of the sodium salt of the naphthalene anion radical in THF-d₈ at 298 K. The vertical arrows mark the low-field quartet due to the sodium splitting. (Bottom) computer simulations of the first two lines of the **spectrum** *using* the average of the field positions (marked for fit line) for each line **as** measured with the Gaussmeter. Note that both lines recorded from the sample in THF lie outaide of those for the sample in THF- d_8 .

vent-separated $(C_{10}H_8^{\bullet-}//\mathrm{Na}^+)$ and contact ion pairs $(C_{10}H_8^{\bullet-},Na^{\bullet})$ first reported by Zandstra and Weissman.^{4b} Upon EPR analysis, the resulting solution exhibits an averaged sodium hyperfine splitting (ANa = 1.03 **G)** at 28 "C (see Figure **2** in ref 4b). This observed splitting is controlled by the overall degree of ion association between the anion radical and the sodium cation, reaction $1⁴$ and

$$
\bigodot \bigodot \bigodot \bigodot Na^{*} \rightleftharpoons \bigodot \bigodot \bigg/\bigg/\bigg/Na^{*} \rightleftharpoons
$$

is a time or weighted average of those for the solvated tight or contact ion pair $(A_{\text{Na}''})$, the solvent-separated ion pair (A_{Na}) , and the free solvated ion (A_{Na}) , eq 2.^{4c,5} The $A_{\text{Na}} = (A_{\text{Na}''}[C_{10}H_8^{-.}Na^+] + A_{\text{Na}'}[C_{10}H_8^{-.}//Na^+] +$

$$
A_{\text{Na}^0}[\text{C}_{10}\text{H}_8^{*-} + \text{Na}^+]/([\text{C}_{10}\text{H}_8^{*-} + \text{Na}^+] + [\text{C}_{10}\text{H}_8^{*-}/\text{/Na}^+]) (2)
$$

coupling constant for the free ion is zero, and that for the solvent-separated ion pair also appears to be near zero, while that for the contact ion pair is reported to be larger than **1.5 G.4c**

Results and Discussion

Exposure of naphthalene solutions in perdeuteriated THF (THF- d_8) to a freshly distilled sodium mirror under high vacuum leads to anion radical solutions that yield the typical 100-line EPR pattern at room temperature (splitting from 4β and 4α protons and 1 Na) or 25 line pattern at -100 °C (no sodium splitting). Careful recordings (sweep widths of 1.2 **and** 1.4 *G)* taken within a few minutes to a few days of sample preparation of the low-field portion of the EPR spectrum of sodium naphthalene anion radical at **298** K reveal that the sodium splitting (A_{Na}) is smaller for samples dissolved in THF- d_8 than it is for those samples generated in normal THF (Figure 1). Samples of the naphthalene anion radical were generated using identical techniques in THF and in THF- d_8 . A sample in THF was placed in the front cavity

^{(1) (}a) A single deuterium will **split the degeneracy of the antibonding** MO's of benzene as does an electron-releasing group; see: Alper, J. S.;
Silby, R. J. Chem. Phys. 1970, 52, 569. Stevenson, G. R.; Reidy, K. A.;
Peters, S. J.; Reiter, R. C. J. Am. Chem. Soc. 1989, 111, 6578. (b) The
electr **electrochemical reduction potential of deuteriated polyaromatica is more negative than those of their light isotopic analogues; see: Goodnow, T.** T.; Kaifer, A. E*. J. Phys. Chem.* 1990, 94, 7682. See also: (c) Bary, Y.;
Gilboa, H.; Halevi, E. A. *J. Chem. Soc., Perkin Trans. 2* 1979, 938. (d)
Srinivasan, R.; Stewart, R. *J. Am. Chem. Soc.* 1976, 98, 7648.

⁽²⁾ For example, see: (a) Schowen, R. L. Prog. Phys. Org. Chem. 1972, 9, 275. (b) Albery, W. J. In Proton-Transfer Reactions; Caldin, E. F., Gold, V., Eds.; Chapman Hall: London, 1975; 263. (d) Schowen, R. L. Gold, V., Eds

⁽³⁾ Schowen, R. L. In *Isotopes in* **Organic** *Chemistry;* **Buncel, E., Lee, C. C., Eds.; Elsevier: New York, 1987; Vol. 7, p 2.**

^{(4) (}a) Chang, R.; Johnson, C. S. J. Am. Chem. Soc. 1966, 88, 2338. (b)
Zandstra, P. J.; Weissmann, S. I. J. Am. Chem. Soc. 1962, 84, 4408. (c)
Hirota, N. J. *Phys. Chem.* 1967, 71, 127. **(5) Steveneon,** *G.* **R. Magn. Reson.** *Reo.* **1980,6, 209.**